Rockets and Launch Vehicles: Selection and Design Training

Rockets and Launch Vehicles: Selection and Design Training

Print Friendly, PDF & Email

Introduction:

Rockets and Launch Vehicles: Selection and Design Training Course with Hands-on Exercises (Onsite, Online and Classroom Live)

This four-day Rockets and Launch Vehicles: Selection and Design Training Workshop course provides an overview of rockets and missiles, including a fourth day covering advanced selection and design processes. The Rockets and Launch Vehicles: Selection and Design Training Workshop course provides a wide practical knowledge in rocket and missile issues and technologies.

The seminar is designed for engineers, supporting disciplines, decision makers and managers of current and future projects needing a more complete understanding of the complex issues of rocket and missile technology. The Rockets and Launch Vehicles: Selection and Design Training Workshop seminar provides a foundation for understanding the issues that must be decided in the design, use, regulation, selection and development of rocket systems of the future. You will learn a wide spectrum of problems, solutions and choices in the technology of rockets and missile used for both military and civil purposes.

The seminar is taught to the point-of-view of a decision maker needing the technical knowledge to make better informed choices in the multi-discipline world of rockets and missiles. The class provides what you need to know about how rockets and missiles work, why they are build the way they are, what they are used for and how they differ from use to use. You will learn how rockets and missiles differ when used as weapons, as launch vehicles, and in spacecraft or satellites.

The objective is to give the decision maker all the tools needed to understand the available choices, and to manage or work with other technical experts of different specialized disciplines. Attendees will receive a complete set of printed class notes used during the class. These notes will be an excellent future reference for anyone in the aerospace business.

Duration: 4 days

Related Courses

  • We can adapt this Rockets and Launch Vehicles: Selection and Design Training course to your group’s background and work requirements at little to no added cost.
  • If you are familiar with some aspects of this Rockets and Launch Vehicles: Selection and Design Training course, we can omit or shorten their discussion.
  • We can adjust the emphasis placed on the various topics or build the Rockets and Launch Vehicles: Selection and Design Training course around the mix of technologies of interest to you (including technologies other than those included in this outline).
  • If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Rockets and Launch Vehicles: Selection and Design Training course in manner understandable to lay audiences.

Rockets and Launch Vehicles: Selection and Design Training – Audience/Target Group:

The target audience for this training course:

  • Engineers, Managers, and Specialists in all aspects of Rocket Design, Fabrication, Operation and Selection.
  • Government and Aerospace decision makers
  • Those working with, or supporting, Rocket projects and Programs.

Rockets and Launch Vehicles: Selection and Design Training – Objectives:

Upon completing this training course, learners will be able to meet these objectives:

  • Fundamentals of rocket and missile systems, functions and disciplines
  • The full spectrum of rocket systems, uses and technologies
  • Optimum Selection and Design strategies
  • Fundamentals and uses of solid, liquid and hybrid rocket systems
  • Differences between weapons systems and those built for commerce

Rockets and Launch Vehicles: Selection and Design Training – Course Syllabus:

  • Introduction to Rockets and Missiles– The student is introduced to the historic context and practical applications of various types of rocket systems.
  • Classifications of Rockets and Missiles– The classifications, terminology, and uses for various types of rocket systems are presented.
  • Rocket Propulsion Fundamentals– The chemistry and physics of all rockets and rocket nozzles operate to achieve thrust is explained. Rocket performance modeling is introduced.
  • Rocket Environments– The flight environments of rockets, such as acceleration, aero/plume heating, mechanical shock, and vibration are presented. The imposed ground handling loads and pre-launch environmental hazards are also discussed.
  • Aerodynamics and Winds– The effect of winds, atmospheric density, and flight velocity on lift, drag, and dynamic pressure is explained. Rocket shape, stability and venting are discussed.
  • Performance Analysis and Staging– The use of performance modeling and loss factors are defined. Staging theory for multi-stage rockets are explained.
  • Mass Properties and Propellant Selection– The relative importance of specific impulse, density, temperature, storability, ignition properties, stability, toxicity, material compatibility, and ullage are explained. Monopropellant and cold gas propellants are introduced.
  • Introduction to Solid Rocket Motors– The historical and technological aspects of Solid Rocket Motors is explored. Solid rocket materials, propellants, thrust-profiles, construction, cost advantages and special applications are explained.
  • Fundamentals of Hybrid Rockets– The characteristics, advantages, and disadvantages of solid-liquid hybrid rocket systems are discussed.
  • Liquid Rocket Engines– Pressure and pump-fed liquid rocket engines are explained, including injectors, cooling, chamber construction, pump cycles, ignition and thrust vector control.
  • Introducing the Liquid Rocket Stage – Liquid rocket stages are introduced, including tank systems, pressurization, cryogenics, and other structures
  • Thrust Vector Control– Thrust Vector Control system types, characteristics, and practical considerations for keeping a rocket vehicle on a desired trajectory are explained.
  • Basic Rocket Avionics– Flight electronics elements of Guidance, Navigation, Control, Communications, Telemetry, Range Safety, and Payloads are defined.
  • Modern Expendable Launch Vehicles– Good expendable launch vehicle design characteristics are identified, with examples of alternative design features.
  • Rockets in Spacecraft Propulsion– The differences between systems on spacecraft, satellites and transfer stages, operating in microgravity, are examined.
  • Launch Sites and Operations– The role and purpose of launch sites, and the choices available for a launch operations infrastructure, is explored.
  • Useful Orbits & Trajectories Made Simple– A simplified presentation of orbital mechanics, for the understanding rocket propulsion in orbital trajectories and maneuvers, is provided.
  • Safety of Rocket Systems– The hazards, risks, and practical mitigation measures in rocket launch operations are examined.
  • Reliability of Rocket Systems– Reliability, and strategies to improve reliability, are discussed, including random and systematic failures, reliability environments, quality, robustness, and redundancy.
  • Reusable Launch Vehicle Theory– Fully and partially Reusable Launch Vehicle characteristics are introduced, with a focus on analyzing the costs of recovery and reuse of the various launch vehicle elements.
  • Rocket Cost Principles – Cost estimation methods of modeling launch systems and strategies for cost reduction. Integrated modeling and the role of incentives are introduced.
  • Chemical Rocket Propulsion Alternatives– Alternatives to chemical rocket propulsion includes air breathing, nuclear, thermal, cannons, and tethers are explored.
  • Proliferation of Missile Technology– Foreign missile threat assessment, and issues surrounding the proliferation of enabling missile technologies.
  • The Future of Rockets and Missiles– The current trends and potential direction of rocket technology, usage, and regulations.
  • Selecting and Designing Launch Vehicles.– The launch vehicle optimization processes for both the designing and selecting a launch vehicles for a given space mission. Design/selection rationale includes time and circumstances of launch requirements, and other reasons for choosing a particular launch system.
  • The Goals and Incentives of Launch Vehicle Design– Setting goals and incentives for a success project. Goals and incentives of the past explain future successes and failures
  • Optimum Launch Vehicle Design Strategies– Optimum design strategies and potential evolution of a launch vehicle design into a family of variants with a broader range of capabilities. Case studies of Soyuz, Delta, Falcon, and others illustrate which strategies have been successful, and how bad assumptions have led to problems in others.
Rockets and Launch Vehicles: Selection and Design Training Course Wrap-Up

Whether you are looking for general information or have a specific question, we want to help!

Request More Information

    Time frame:

    0