Download Interent ExplorerDownload Apple SafariDownload OperaDownload FirefoxDownload Google Chrome

Space Systems Fundamentals Training

Space Systems Fundamentals Training

Space Systems Fundamentals Training:

Space Systems Fundamentals Training Course with Hands-on Exercises (Onsite, Online, and Classroom Live)

Space Systems Fundamentals Training course provides an overview of the fundamentals of concepts and technologies of modern spacecraft systems design. Satellite system and mission design is an essentially interdisciplinary sport that combines engineering, science, and external phenomena. We will concentrate on the scientific and engineering foundations of spacecraft systems and interactions among various subsystems.

Examples show how to quantitatively estimate various mission elements (such as velocity increments) and conditions (equilibrium temperature) and how to size major spacecraft subsystems (propellant, antennas, transmitters, solar arrays, batteries). Real examples are used to permit an understanding of the systems selection and trade-off issues in the design process.

The fundamentals of subsystem technologies provide an indispensable basis for system engineering. The basic nomenclature, vocabulary, and concepts will make it possible to converse with understanding with subsystem specialists. The course is designed for engineers and managers who are involved in planning, designing, building, launching, and operating space systems and spacecraft subsystems and components.

The extensive set of course notes provides a concise reference for understanding, designing, and operating modern spacecraft. The course will appeal to engineers and managers of diverse backgrounds and varying levels of experience.

What’s Included?
  • 4 days of Space Systems Fundamentals Training with an expert instructor
  • Space Systems Fundamentals Training Electronic Course Guide
  • Certificate of Completion
  • 100% Satisfaction Guarantee
Related Courses
Customize It:
  • We can adapt this Space Systems Fundamentals Training course to your group’s background and work requirements at little to no added cost.
  • If you are familiar with some aspects of this Space Systems Fundamentals course, we can omit or shorten their discussion.
  • We can adjust the emphasis placed on the various topics or build the Space Systems Fundamentals Training course around the mix of technologies of interest to you (including technologies other than those included in this outline).
  • If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Space Systems Fundamentals Training course in a manner understandable to lay audiences.
Audience/Target Group:

The target audience for this Space Systems Fundamentals course:

  • The Space Systems Fundamentals course will appeal to engineers and managers of diverse backgrounds and varying levels of experience.

Upon completing this Space Systems Fundamentals course, learners will be able to meet these objectives:

  • Common space mission and spacecraft bus configurations, requirements, and constraints.
  • Common orbits.
  • Fundamentals of spacecraft subsystems and their interactions.
  • How to calculate velocity increments for typical orbital maneuvers.
  • How to calculate the required amount of propellant.
  • How to design communications links.
  • How to size solar arrays and batteries.
  • How to determine spacecraft temperature.
Course Syllabus:
  1. Space Missions And Applications. Science, exploration, commercial, national security. Customers.
  2. TSpace Environment And Spacecraft Interaction. Universe, galaxy, solar system. Coordinate systems. Time. Solar cycle. Plasma. Geomagnetic field. Atmosphere, ionosphere, magnetosphere. Atmospheric drag. Atomic oxygen. Radiation belts and shielding.
  3. Orbital Mechanics And Mission Design. Motion in the gravitational field. Elliptic orbit. Classical orbit elements. Two-line element format. Hohmann transfer. Delta-V requirements. Launch sites. Launch to geostationary orbit. Orbit perturbations. Key orbits: geostationary, sun-synchronous, Molniya.
  4. Space Mission Geometry Satellite horizon, ground track, swath. Repeating orbits.
  5. Spacecraft And Mission Design Overview. Mission design basics. The life cycle of the mission. Reviews. Requirements. Technology readiness levels. Systems engineering.
  6. Mission Support. Ground stations. Deep Space Network (DSN). STDN. SGLS. Space Laser Ranging (SLR). TDRSS.
  7. Attitude Determination And Control. Spacecraft attitude. Angular momentum. Environmental disturbance torques. Attitude sensors. Attitude control techniques (configurations). Spin axis precession. Reaction wheel analysis.
  8. Spacecraft Propulsion Requirements. Fundamentals of propulsion: thrust, specific impulse, total impulse. Rocket dynamics: rocket equation. Staging. Nozzles. Liquid propulsion systems. Solid propulsion systems. Thrust vector control. Electric propulsion.
  9. Launch Systems. Launch issues. Atlas and Delta launch families. Acoustic environment. Launch system example: Delta II.
  10. Space Communications Communications basics. Electromagnetic waves. Decibel language. Antennas. Antenna gain. TWTA and SSA. Noise. Bit rate. Communication link design. Modulation techniques. Bit error rate.
  11. Spacecraft Power Systems. Spacecraft power system elements. Orbital effects. Photovoltaic systems (solar cells and arrays). Radioisotope thermal generators (RTG). Batteries. Sizing power systems.
  12. Thermal Control. Environmental loads. Blackbody concept. Planck and Stefan-Boltzmann laws. Passive thermal control. Coatings. Active thermal control. Heat pipes.
Space Systems Fundamentals Training Course Wrap-Up

Whether you are looking for general information or have a specific question, we want to help!

Request More Information

    Time frame: