Tactical Intelligence, Surveillance & Reconnaissance Sensing (ISR) Training

Tactical Intelligence, Surveillance & Reconnaissance Sensing (ISR) Training

Print Friendly, PDF & Email

Introduction:

Tactical Intelligence, Surveillance & Reconnaissance Sensing (ISR) Training Course with Hands-on Exercises (Onsite, Online and Classroom Live)

Over the past decade, we have witnessed the development of several key technologies that have successfully merged to form remote sensing systems addressing applications previously thought too complex, too expensive, or simply not capable of being observed at the level required. MEMS-based sensors have undergone significant refinements that have led to highly capable sensor systems that perform target detection, discrimination and tracking.

Equal in significance have been advances in miniaturizing inertial navigation components and injecting geolocation capabilities, to allow for both static and mobile applications. To complete the system construct, note that data communication chipsets have advanced in parallel and have been successfully merged with sensing technologies to become effective components of widely distributed sensor systems.

Middleware has become the “glue” that holds these functions together to form powerful sensing solutions to a host of problems. This 2-day Tactical Intelligence, Surveillance & Reconnaissance Sensing Training (ISR) Bootcamp course will present fundamental sensing equations that describe sensor system performance for optical (infrared/VIS passive and laser radar), RF (including ultra wide band, UWB), and acoustic.

The Tactical Intelligence, Surveillance & Reconnaissance Sensing (ISR) Training Bootcamp course will provide the underlying probability theory and derive performance equations for these sensor technologies. Scalability is presented to address the one-to-thousands of sensor node systems. Techniques will be provided that combine sensor and system functional component models, enabling the student to embark on specific design strategies and/or evaluation of existing systems.

The Tactical Intelligence, Surveillance & Reconnaissance Sensing Training (ISR) course includes example Python code developed to examine optical sensor performance and case studies of existing sensor systems to provide insight into system limitations and considerations (development and operation costs, and complexities) that arise in real-world remote sensor system deployments.

Duration: 4 days

Related Courses

  • We can adapt this Tactical Intelligence, Surveillance & Reconnaissance Sensing  Training (ISR) course to your group’s background and work requirements at little to no added cost.
  • If you are familiar with some aspects of this Tactical Intelligence, Surveillance & Reconnaissance Sensing Training (ISR) course, we can omit or shorten their discussion.
  • We can adjust the emphasis placed on the various topics or build the Tactical Intelligence, Surveillance & Reconnaissance Sensing Training (ISR) course around the mix of technologies of interest to you (including technologies other than those included in this outline).
  • If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Tactical Intelligence, Surveillance & Reconnaissance Sensing Training (ISR) course in manner understandable to lay audiences.

Tactical Intelligence, Surveillance & Reconnaissance Sensing Training – Audience/Target Group:

The target audience for this Tactical Intelligence, Surveillance & Reconnaissance Sensing  Training (ISR) course:

  • All

Tactical Intelligence, Surveillance & Reconnaissance Sensing Training – Objectives:

Upon completing this Tactical Intelligence, Surveillance & Reconnaissance Sensing  Training (ISR) course, learners will be able to meet these objectives:

  • Terminology associated with of critical terms associate with sensors, sensor technologies, sensor system performance, and assessment evaluation
  • Identification of key performance parameters via sensor design equations
  • How to adapt, and successfully use, underlying performance equations associated with sensors and sensor systems
  • What are the critical performance parameters, and their rank-order into importance for sensor/system success
  • Examples are reviewed (Bernoulli trials, Poisson statistics, memoryless systems) to provide tangible evaluation of sensors in real-world (stochastic) applications.
  • How to interpret and analyze ISR system requirements at the subsystem and overall system levels. This includes the process of generating system design objectives and key performance parameters (KPPs).
  • To develop and use existing evaluation “tools” to evaluate limitations and capabilities exhibited by ISR system(s), end-to-end.
  • Which sensor technologies provide what capability, including how imagers (EO/IR), radar, laser radar, and other sensor modalities function within tactical ISR systems.
  • How to consider false alarms while maintaining an acceptable level of detection probability via working the “trade-off space”.
  • Design rules associated with object detection, tracking, and identification
  • How to manage distributed ISR assets and implement successful exfiltration of vital sensor data products to users that require such (actionable timeliness).
  • How to support seamless integration of ISR system(s) to situational analyses and common operating (COP) architectures, such as C2PC or FalconView.
  • Which effective set of “analysis” tools exist that can aid in evaluating ISR components, systems, requirements verification (and validation), and/or effective deployment and maintenance of an ISR system.
  • Discussion of standards that provide value-added capabilities, including: sensor harmonization and sensor web enablement (SWE) technologies.

Tactical Intelligence, Surveillance & Reconnaissance Sensing Training – Course Syllabus:

  • Overview of ISR systems. Including definitions, objectives, and approaches.
  • Requirement development. Tracking of requirements and responsive design implementation(s).
  • Sensor modalities and design. Capabilities, evaluation criteria, and modeling approach: Electro-optical imagers (EO/IR), Radar (including ultra wide band, UWB), Laser radar, Seismic/Acoustic monitoring, Ad hoc wireless sensor nodes (WSN).
  • Wireless Sensor Networking (WSN). Low-power efficient networking, microcontroller-based processing, power-saving and self-healing strategies.
  • Data communication systems. WSN-based and exfiltration (worldwide) architectures. Protocols employed and consideration of data communication tradeoffs.
  • Geolocating sensors and tracked targets. Positioning of the sensor field and ability to discern object location and velocity.
  • Target tracking and identification. Discriminates used by ISR systems and track formation by ISR systems. Tagging, tracking & locating targets of interest (TTL), and non-cooperative target identification (NCID).
  • Tactical ISR Platforms. Land-based, air-based, and sea-based systems.
  • Situational awareness platforms. Getting timely and understandable ISR data to the decision-makers. Injecting data from, and controlling of, ISR systems.
  • ISR system performance and evaluation tools. Gauging a viable ISR system and associated capabilities and limitations.
  • Case studies. Review of existing, and planned, ISR systems throughout the 2-day course.
Tactical Intelligence, Surveillance & Reconnaissance Sensing (ISR) Training Course Wrap-Up

Whether you are looking for general information or have a specific question, we want to help!

Request More Information

    Time frame:

    0